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This chapter describes the design of the Mach microkernel. Mach runs on both multiprocessor and
uniprocessor computers connected by networks. It was designed to allow new distributed systems
to evolve while maintaining UNIX compatibility.  

Mach’s is a seminal design. It incorporates, in particular, sophisticated interprocess
communication and virtual memory facilities. We describe the Mach architecture and discuss all of
its major abstractions: threads and tasks (processes); ports (communication endpoints); and virtual
memory, including its role in efficient inter-task communication and support for object sharing
through paging between computers.
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18.1 Introduction

 

The Mach project [Acetta 

 

et al

 

. 1986, Loepere 1991, Boykin 

 

et al

 

. 1993] was based at Carnegie-
Mellon University in the USA until 1994. Its development into a real-time kernel continued there
[Lee 

 

et al

 

. 1996], and groups at the University of Utah and the Open Software Foundation
continued its development. The Mach project was successor to two other projects, RIG [Rashid
1986] and Accent [Rashid and Robertson 1981, Rashid 1985, Fitzgerald and Rashid 1986]. RIG
was developed at the University of Rochester in the 1970s, and Accent was developed at Carnegie-
Mellon during the first half of the 1980s. In contrast to its RIG and Accent predecessors, the Mach
project never set out to develop a complete distributed operating system. Instead, the Mach kernel
was developed to provide direct compatibility with BSD UNIX. It was designed to provide
advanced kernel facilities that would complement those of UNIX and allow a UNIX
implementation to be spread across a network of multiprocessor and single-processor computers.
From the beginning, the designers’ intention was for much of UNIX to be implemented as user-
level processes.

Despite these intentions, Mach version 2.5, the first of the two major releases, included all
the UNIX compatibility code inside the kernel itself. It ran on SUN-3s, the IBM RT PC,
multiprocessor and uniprocessor VAX systems, and the Encore Multimax and Sequent
multiprocessors, among other computers. From 1989, Mach 2.5 was incorporated as the base
technology for OSF/1, the Open Software Foundation’s rival to System V Release 4 as the
industry-standard version of UNIX. An older version of Mach was used as a basis for the operating
system for the NeXT workstation.

The UNIX code was removed from the version 3.0 Mach kernel, however, and it is this
version that we describe. Most recently, Mach 3.0 is the basis of the implementation of MkLinux,
a variant of the Linux operating system running on Power Macintosh computers [Morin 1997]. The
version 3.0 Mach kernel also runs on Intel x86-based PCs. It ran on the DECstation 3100 and 5000
series computers, some Motorola 88000-based computers and SUN SPARCStations; ports were
undertaken for IBM’s RS6000, Hewlett-Packard’s Precision Architecture and Digital Equipment
Corporation’s Alpha. 

Version 3.0 Mach is a basis for building user-level emulations of operating systems, database
systems, language run-time systems and other items of system software that we call subsystems
(Figure 18.1).

The emulation of conventional operating systems makes it possible to run existing binaries
developed for them. In addition, new applications for these conventional operating systems can be
developed. At the same time, middleware and applications that take advantage of the benefits of
distribution can be developed; and the implementations of the conventional operating systems can
also be distributed. Two important issues arise for operating system emulations. First, distributed
emulations cannot be entirely accurate, because of the new failure modes that arise with

Figure 18.1 Mach supports operating systems, databases and other subsystems
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distribution. Second, the question is still open of whether acceptable performance levels can be
achieved for widespread use. 

 

18.1.1 Design goals and chief design features

 

The main Mach design goals and features are as follows: 

 

Multiprocessor operation

 

:

 

  

 

Mach was designed to execute on a shared memory multiprocessor
so that both kernel threads and user-mode threads could be executed by any processor. Mach
provides a multi-threaded model of user processes, with execution environments called 

 

tasks

 

.
Threads are pre-emptively scheduled, whether they belong to the same tasks or to different
tasks, to allow for parallel execution on a shared-memory multiprocessor.

 

Transparent extension to network operation

 

:

 

  

 

In order to allow for distributed programs that
extend transparently between uniprocessors and multiprocessors across a network, Mach has
adopted a location-independent communication model involving ports as destinations. The
Mach kernel, however, is designed to be 100% unaware of networks. The Mach design relies
totally on user-level network server processes to ferry messages transparently across the
network (Figure 18.2). This is a controversial design decision, given the costs of context
switching that we examined in Chapter 6. However, it allows for absolute flexibility in the
control of network communication policy.

 

User-level servers

 

:

 

  

 

Mach implements an object-based model in which resources are managed
either by the kernel or by dynamically loaded servers. Originally, only user-level servers were
allowed but later Mach was adapted to accommodate servers within the kernel’s address space.
As we have mentioned, a primary aim was for most UNIX facilities to be implemented at user
level, while providing binary compatibility with existing UNIX. With the exception of some
kernel-managed resources, resources are accessed uniformly by message passing, however they
are managed. To every resource, there corresponds a port managed by a server. The 

 

Mach
Interface Generator

 

 (MiG) was developed to generate RPC stubs used to hide message-based
accesses at the language level [Draves 

 

et al

 

. 1989].

 

Operating system emulation

 

:

 

  

 

To support the binary-level emulation of UNIX and other
operating systems, Mach allows for the transparent redirection of operating system calls to
emulation library calls and thence to user-level operating system servers – a technique known
as 

 

trampolining

 

. It also includes a facility that allows exceptions such as address space
violations arising in application tasks to be handled by servers. Case studies of UNIX emulation
under Mach and Chorus can be found at www.cdk3.net/oss.

Figure 18.2 Mach tasks, threads and communication
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Flexible virtual memory implementation

 

:

 

  

 

Much effort was put into providing virtual memory
enhancements that would equip Mach for UNIX emulation and for supporting other
subsystems. This included taking a flexible approach to the layout of a process’s address space.
Mach supports a large, sparse process address space, potentially containing many regions. Both
messages and open files, for example, can appear as virtual memory regions. Regions can be
private to a task, shared between tasks or copied from regions in other tasks. The design includes
the use of memory mapping techniques, notably copy-on-write, to avoid copying data when, for
example, messages are passed between tasks. Finally, Mach was designed to allow  servers,
rather than the kernel itself, to implement backing storage for virtual memory pages. Regions
can be mapped to data managed by servers called 

 

external pagers

 

. Mapped data can reside in
any generalized abstraction of a memory resource such as distributed shared memory, as well
as in files.

 

Portability

 

:

 

  

 

Mach was designed to be portable to a variety of hardware platforms. For this
reason, machine-dependent code was isolated as far as possible. In particular, the virtual
memory code was divided between machine-independent and machine-dependent parts [Rashid

 

et al

 

. 1988].

 

18.1.2 Overview of the main Mach abstractions

 

We can summarize the abstractions provided by the Mach kernel as follows (these will be
described in detail later in this chapter):

 

Tasks

 

:

 

  

 

A Mach task is an execution environment. This consists primarily of a protected address
space, and a collection of 

 

kernel-managed

 

 capabilities used for accessing ports. 

 

Threads

 

:

 

  

 

Tasks can contain multiple threads. The threads belonging to a single task can execute
in parallel at different processors in a shared-memory multiprocessor. 

 

Ports

 

:

 

  

 

A port in Mach is a unicast, unidirectional communication channel with an associated
message queue. Ports are not accessed directly by the Mach programmer and are not part of a
task. Rather, the programmer is given handles to 

 

port rights

 

. These are capabilities to send
messages to a port or receive messages from a port.

 

Port sets

 

:

 

  

 

A port set is a collection of port receive rights local to a task. It is used to receive a
message from any one of a collection of ports. Port sets should not be confused with port 

 

groups

 

,
which are multicast destinations but are not implemented in Mach. 

 

Messages

 

:

 

  

 

A message in Mach can contain port rights in addition to pure data. The kernel
employs memory management techniques to transfer message data efficiently between tasks.

 

Devices

 

:

 

  

 

Servers such as file servers running at user level must access devices. The kernel
exports a low-level interface to the underlying devices for this purpose. 

 

Memory object

 

:

 

  

 

Each region of the virtual address space of a Mach task corresponds to a
memory object. This is an object that in general is implemented outside the kernel itself but is
accessed by the kernel when it performs virtual memory paging operations. A memory object
is an instance of an abstract data type that includes operations to fetch and store data that are
accessed when threads give rise to page-faults in attempting to reference addresses in the
corresponding region. 

 

Memory cache object

 

:

 

  

 

For every mapped memory object, there is a kernel-managed object that
contains a cache of pages for the corresponding region that are resident in main memory. This
is called a memory cache object. It supports operations needed by the external pager that
implements the memory object.

We shall now consider the main abstractions. The abstraction of devices is omitted in the interests
of brevity. 
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18.2 Ports, naming and protection

 

Mach identifies individual resources with ports. To access a resource, a message is sent to the
corresponding port. The Mach assumption is that servers will in general manage many ports: one
for every resource. A single-server UNIX system uses about 2000 ports [Draves 1990]. Ports
therefore have to be cheap to create and manage.

The problem of protecting a resource from illegal accesses amounts to that of protecting the
corresponding port against illegal sends. This is achieved in Mach by kernel control over the
acquisition of capabilities for the port, and also by network server control over messages that arrive
over the network. 

The capability to a port has a field specifying the port access rights belonging to the task that
holds it. There are three different types of port rights. 

 

Send rights

 

 allow the threads in the task that
possesses them to send messages to the corresponding port. A restricted form of these, 

 

send-once
rights

 

, allow at most one message to be sent, after which the rights are automatically destroyed by
the kernel. This restricted form allows, for example, a client to obtain a reply from a server in the
knowledge that the server can no longer send a message to it (thus protecting it from buggy
servers); in addition, the server is spared the expense of garbage collecting send rights received
from clients. Finally, 

 

receive rights

 

 allow a task’s threads to receive messages from the port’s
message queue. At most one task may possess receive rights at any one time, whereas any number
of tasks may possess send rights or send-once rights. Mach supports only 

 

N

 

-to-one
communication: multicast is not supported directly by the kernel.

At creation, a task is given a 

 

bootstrap port right

 

, which is a send right that it uses to obtain
the services of other tasks. After creation, the threads belonging to the task acquire further port
rights either by creating ports, or by receiving port rights sent to them in messages. 

Mach’s port rights are stored inside the kernel and protected by it (Figure 18.3). Tasks refer
to port rights by local identifiers, which are valid only in the task’s local 

 

port name space

 

. This
allows the kernel’s implementors to choose efficient representations for these capabilities (such as
pointers to message queues), and to choose integer local names that are convenient for the kernel
in looking up the capability from the name. In fact, like UNIX file descriptors, local identifiers are
integers used to index a kernel table containing the task’s capabilities.

The Mach naming and protection scheme thus allows rapid access to local message queues
from a given user-level identifier. Against this advantage, we must set the expense of kernel
processing whenever rights are transmitted in messages between tasks. At the very least, send
rights have to be allocated a local name in the recipient task’s name space and space in its kernel
tables. And we note that, in a secure environment, the transmission of port rights by the network
servers requires encryption of those rights to guard against forms of security attack such as
eavesdropping [Sansom 

 

et al

 

. 1986].

Figure 18.3 A task’s port name space
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18.3 Tasks and threads

 

A task is an execution environment: tasks themselves cannot perform any actions; only the threads
within them can. However, for convenience we shall sometimes refer to a task performing actions
when we mean a thread within the task. The major resources associated directly with a task are its
address space, its threads, its port rights, port sets and the local name space in which port rights and
port sets are looked up. We shall now examine the mechanism for creating a new task, and the
features related to the management of tasks and the execution of their constituent threads.

 

Creating a new task 

 

◊

 

  

 

The UNIX 

 

fork

 

 command creates a new process by copying an existing one.
Mach’s model of process creation is a generalization of the UNIX model. Tasks are created with
reference to what we shall call a 

 

blueprint task

 

 (which need not be the creator). The new task
resides at the same computer as the blueprint task. Since Mach does not provide a task migration
facility, the only way to establish a task at a remote computer is via a task that already resides there.
The new task’s bootstrap port right is inherited from its blueprint, and its address space is either
empty or is inherited from its blueprint (address space inheritance is discussed in the subsection on
Mach virtual memory below). A newly created task has no threads. Instead, the task’s creator
requests the creation of a thread within the child task. Thereafter, further threads can be created by
existing threads within the task. See Figure 18.4 for some of the Mach calls related to task and
thread creation.

 

Invoking kernel operations 

 

◊

 

  

 

When a Mach task or thread is created, it is assigned a so-called 

 

kernel
port

 

. Mach ‘system calls’

 

 

 

are divided into those

 

 

 

implemented directly as kernel traps and those
implemented by message passing to kernel ports. The latter method has the advantage of allowing
network-transparent operations on remote tasks and threads as well as local ones. A kernel service
manages kernel resources in the same way that a user-level server manages other resources. Each
task has send rights to its kernel port, which enables it to invoke operations upon itself (such as to
create a new thread). Each of the kernel services accessed by message passing has an interface
definition. Tasks access these services via stub procedures, which are generated from their
interface definitions by the Mach Interface Generator. 

 

Exception handling 

 

◊

 

  

 

In addition to a kernel port, tasks and (optionally) threads can possess an

 

exception port

 

. When certain types of exception occur, the kernel responds by attempting to send
a message describing the exception to an associated exception port. If there is no exception port for
the thread, the kernel looks for one for the task. The thread that receives this message can attempt
to fix the problem (it might, for example, grow the thread’s stack in response to an address space
violation), and it then returns a status value in a reply message. If the kernel finds an exception port
and receives a reply indicating success, it then restarts the thread that raised the exception.
Otherwise, the kernel terminates it.

For example, the kernel sends a message to an exception port when a task attempts an address
space access violation or to divide by zero. The owner of the exception port could be a debugging
task, which could execute anywhere in the network by virtue of Mach’s location-independent
communication. Page faults are handled by external pagers. Section 18.4 describes how Mach
handles system calls directed to an emulated operating system.

 

Task and thread management 

 

◊

 

  

 

About forty procedures in the kernel interface are concerned with
the creation and management of tasks and threads. The first argument of each procedure is a send
right to the corresponding kernel port, and message passing system calls are used to request the
operation of the target kernel. Some of these task and thread calls are shown in Figure 18.4. In
summary, thread scheduling priorities can be set individually; threads and tasks can be suspended,
resumed and terminated; and the execution state of threads can be externally set, read and
modified. The latter facility is important for debugging and also for setting up software interrupts.
Yet more kernel interface calls are concerned with the allocation of a task’s threads to particular

 

processor sets

 

. A processor set is a subset of processors in a multiprocessor. By assigning threads
to processor sets, the available computational resources can be crudely divided between different
types of activity. The reader is referred to Loepere [1991] for details of kernel support for task and
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thread management and processor allocation. Tokuda 

 

et al

 

. [1990] and Lee 

 

et al

 

. [1996] describe
extensions to Mach for real-time thread scheduling and synchronization.

 

18.4 Communication model

 

Mach provides a single system call for message passing: 

 

mach_msg

 

. Before describing this, we
shall say more about messages and ports in Mach.

 

18.4.1 Messages

 

A message consists of a fixed-size header followed by a variable-length list of data items (Figure
18.5). 

The fixed-size header contains: 

 

The destination port

 

: For simplicity, this is part of the message rather than being specified as
a separate parameter to the 

 

mach_msg

 

 system call. It is specified by the local identifier of the
appropriate send rights.

 

A reply port

 

: If a reply is required, then send rights to a local port (that is, one for which the
sending thread has receive rights) are enclosed in the message for this purpose.

 

An operation identifier

 

: This identifies an operation (procedure) in the service interface and
is meaningful only to applications.

Figure 18.4 Task and thread creation

task_create(parent_task, inherit_memory, child_task)
parent_task is the task used as a blueprint in the creation of the new task, 
inherit_memory specifies whether the child should inherit the address space of its 
parent or be assigned an empty address space, child_task is the identifier of the new 
task.

thread_create(parent_task, child_thread)
parent_task is the task in which the new thread is to be created, child_thread is the 
identifier of the new thread. The new thread has no execution state and is suspended.

thread_set_state(thread, flavour, new_state, count)
thread is the thread to be supplied with execution state, flavour specifies the machine 
architecture, new_state specifies the state (such as the program counter and stack 
pointer), count is the size of the state.

thread_resume(thread)
This is used to resume the suspended thread identified by thread.

Figure 18.5 A Mach message containing port rights and out-of-line data
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Extra data size: Following the header (that is, contiguous with it) there is, in general, a
variable-sized list of typed items. There is no length limit to this, except the number of bits
in this field and the total address space size.

Each item in the list after the message header is one of the following (which can occur in any order
in the message):

Typed message data: individual, in-line type-tagged data items;

Port rights: referred to by their local identifiers;

Pointers to out-of-line data: data held in a separate non-contiguous block of memory.

Mach messages consist of a fixed-size header and multiple data blocks of variable sizes, some of
which may be out of line (that is, non-contiguous). However, when out-of-line message data are
sent, the kernel – not the receiving task – chooses the location in the receiving task’s address space
of the received data. This is a side effect of the copy-on-write technique used to transfer this data.
Extra virtual memory regions received in a message must be de-allocated explicitly by the
receiving task if they are no longer required. Since the costs of virtual memory operations outweigh
those of data copying for small amounts of data, it is intended that only reasonably large amounts
of data are sent out of line.

The advantage of allowing several data components in messages is that this allows the
programmer to allocate memory separately for data and for metadata. For example, a file server
might locate a requested disk block from its cache. Instead of copying the block into a message
buffer, contiguously with header information, the data can be fetched directly from where they
reside by providing an appropriate pointer in the reply message. This is a form of what is known
as scatter-gather I/O, wherein data is written to or read from multiple areas of the caller’s address
space in one system call. The UNIX readv and writev system calls also provide for this [Leffler et
al. 1989].

The type of each data item in a Mach message is specified by the sender (as, for example, in
ASN.1). This enables user-level network servers to marshal the data into a standard format when
they are transmitted across a network. However, this marshalling scheme has performance
disadvantages compared with marshalling and unmarshalling performed by stub procedures
generated from interface definitions. Stub procedures have common knowledge of the data types
concerned, need not include these types in the messages and may marshal data directly into the
message (See Section 4.2). A network server may have to copy the sender’s typed data into another
message as it marshals them.

18.4.2 Ports

A Mach port has a message queue whose size can be set dynamically by the task with receive
rights. This facility enables receivers to implement a form of flow control. When a normal send
right is used, a thread attempting to send a message to a port whose message queue is full will be
blocked until room becomes available. When a thread uses a send-once right, the recipient always
queues the message, even if the message queue is full. Since a send-once right is used, it is known
that no further messages can be sent from that source. Server threads can avoid blocking by using
send-once rights when replying to clients.

Sending port rights ◊  When port send rights are enclosed in a message, the receiver acquires send
rights to the same port. When receive rights are transmitted, they are automatically de-allocated in
the sending task. This is because receive rights cannot be possessed by more than one task at a time.
All messages queued at the port and all subsequently transmitted messages can be received by the
new owner of receive rights, in a manner that is transparent to tasks sending to the port. The
transparent transfer of receive rights is relatively straightforward to achieve when the rights are
transferred within a single computer. The acquired capability is simply a pointer to the local
message queue. In the inter-computer case, however, a number of more complex design issues
arise. These are discussed below.
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Monitoring connectivity ◊  The kernel is designed to inform senders and receivers when conditions
arise under which sending or receiving messages would be futile. For this purpose, it keeps
information about the number of send and receive rights referring to a given port. If no task holds
receive rights for a particular port (for example, because the task holding these rights failed), then
all send rights in local tasks’ port name spaces become dead names. When a sender attempts to use
a name referring to a port for which receive rights no longer exist, the kernel turns the name into a
dead name and returns an error indication. Similarly, tasks can request the kernel to notify them
asynchronously of the condition that no send rights exist for a specified port. The kernel performs
this notification by sending the requesting thread a message, using send rights given to it by the
thread for this purpose. The condition of no send rights can be ascertained by keeping a reference
count that is incremented whenever a send right is created and decremented when one is destroyed.

It should be stressed that the conditions of no senders/no receiver are tackled within the
domain of a single kernel at relatively little cost. Checking for these conditions in a distributed
system is, by contrast, a complex and expensive operation. Given that rights can be sent in
messages, the send or receive rights for a given port could be held by any task, or even be in a
message, queued at a port or in transit between computers.

Port sets ◊  Port sets are locally managed collections of ports that are created within a single task.
When a thread issues a receive from a port set, the kernel returns a message that was delivered to
some member of the set. It also returns the identifier of this port’s receive rights so that the thread
can process the message accordingly. 

Ports sets are useful because typically a server is required to service client messages at all of
its ports at all times. Receiving a message from a port whose message queue is empty blocks a
thread, even if a message that it could process arrives on another port first. Assigning a thread to
each port overcomes this problem but is not feasible for servers with large numbers of ports
because a thread is a more expensive resource than a port. By collecting ports into a port set, a
single thread can be used to service incoming messages without fear of missing any. Furthermore,
this thread will block if no messages are available on any port in the set, so avoiding a busy-waiting
solution in which the thread polls until a message arrives on one of the ports.

18.4.3 Mach_msg

The Mach_msg system call provides for both asynchronous message passing and request-reply-
style interactions, which makes it extremely complicated. We shall give only an overview of its
semantics. The complete call is as follows:

mach_msg(msg_header, option, snd_siz, rcv_siz, rcv_name, timeout, notify)
msg_header points to a common message header for the sent and received messages, option 
specifies send, receive or both, snd_siz and rcv_siz give the sizes of the sent and received 
message buffers, rcv_name specifies the port or port set receive rights (if a message is received), 
timeout sets a limit to the total time to send and/or receive a message, notify supplies port rights 
which the kernel is to use to send notification messages under exceptional conditions.

Mach_msg either sends a message, receives a message, or both. It is a single system call that clients
use to send a request message and receive a reply, and servers use to reply to the last client and
receive the next request message. Another benefit of using a combined send/receive call is that in
the case of a client and server executing at the same computer the implementation can employ an
optimization called handoff scheduling. This is where a task about to block after sending a message
to another task ‘donates’ the rest of its timeslice to the other task’s thread. This is cheaper than
going through the queue of RUNNABLE threads to select the next thread to run.

Messages sent by the same thread are delivered in sending order, and message delivery is
reliable. At least, this is guaranteed where messages are sent between tasks hosted by a common
kernel – even in the face of lack of buffer space. When messages are transmitted across a network
to a failure-independent computer, at-most-once delivery semantics are provided.
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The timeout is useful for situations in which it is undesirable for a thread to be tied up
indefinitely, for example awaiting a message that might never arrive, or waiting for queue space at
what turns out to be a buggy server’s port. 

18.5 Communication implementation

One of the most interesting aspects of the Mach communication implementation is the use of user-
level network servers. The network servers (called netmsgservers in the Mach literature), one per
computer, are collectively responsible for extending the semantics of local communication across
the network. This includes preserving, as far as possible, delivery guarantees and making network
communication transparent. It also includes effecting and monitoring the transfer of port rights. In
particular, the network servers are responsible for protecting ports against illegal access, and for
maintaining the privacy of message data across the network. Full details of Mach’s treatment of
protection issues are available in Sansom et al. [1986].

18.5.1 Transparent message delivery

Since ports are always local to a Mach kernel, it is necessary to add an externally imposed
abstraction of network port, to which messages can be addressed across the network. A network
port is a globally unique channel identifier that is handled only by the network servers and is
associated by them with a single Mach port at any one time. Network servers possess send and
receive rights to network ports in the same way that tasks possess send and receive rights to Mach
ports.

The transmission of a message between tasks located at different computers is shown in
Figure 18.6. The rights held by the sender task are to a local port, for which receive rights are held
by the local network server. In the figure, the network server’s local identifier for the receive rights
is 8. The network server at the sender’s computer looks up an entry for the rights identifier in a
table of network ports for which it has send rights. This yields a network port and a network address
hint. It sends the message, with the network port attached, to the network server at the address
indicated in the table. There the local network server extracts the network port and looks this up in
a table of network ports for which it has receive rights. If it finds a valid entry there (the network
port might have been relocated to another kernel), then this entry contains the identifier of send
rights to a local Mach port. This network server forwards the message using these rights, and the

Figure 18.6 Network communication in Mach
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message is thus delivered to the appropriate port. The whole process of handling by the network
servers is transparent to both the sender and the receiver.

How are the tables shown in Figure 18.6 set up? The network server of a newly booted
computer engages in an initialization protocol, whereby send rights are obtained to network-wide
services. Consider what happens thereafter, when a message containing port rights is transferred
between network servers. These rights are typed and therefore can be tracked by the network
servers. If a task sends a local port’s send rights, the local network server creates a network port
identifier and a table entry for the local port – if none exists – and attaches the identifier to the
message it forwards. The receiving network server also sets up a table entry if none exists.

When receive rights are transmitted, the situation is more complicated. This is an example in
which migration transparency is required: clients must be able to send messages to the port while
it migrates. First, the network server local to the sender acquires the receive rights. All messages
destined for the port, local and remote, start arriving at this server. It then engages in a protocol
whereby the receive rights are consistently transferred to the destination network server.

The main issue concerning this transfer of rights is how to arrange that messages sent to the
port now arrive at the computer to which receive rights have been transferred. One possibility
would be for Mach to keep track of all network servers possessing send rights to a given network
port, and to notify these servers directly when receive rights were transferred. This scheme was
rejected as being too expensive to manage. A cheaper alternative would have been to use a
hardware broadcast facility to broadcast the change of location to all network servers. However,
such a broadcast service is not reliable, and hardware broadcast is not available on all networks.
Instead, responsibility for locating a network port was placed upon the network servers that hold
send rights to the port. 

Recall that a network server uses a location hint when it forwards a message to another
network server. The possible responses are:

port here: the destination holds receive rights;

port dead: the port is known to have been destroyed;

port not here, transferred: receive rights were transferred to a specified address;

port not here, unknown: there is no record of the network port;

no response: the destination computer is dead.

If a forwarding address is returned, the sending network server forwards the message; but this in
turn is only a hint and might be inaccurate. If at some point the sender runs out of forwarding
addresses, then it resorts to broadcasting. How to manage chains of forwarding addresses and what
to do when a computer holding a forwarding address crashes are both major design issues for this
type of location algorithm, particularly over a WAN. Use of forwarding addresses over a WAN is
described in Black and Artsy [1990].

A second issue in achieving migration transparency is how to synchronize message delivery.
Mach guarantees that two messages sent by the same thread are delivered in the same order. How
can this be guaranteed while receive rights are being transmitted? If care is not taken, a message
could be delivered by the new network server before a prior message queued at the original
computer was forwarded. The network server can achieve this by holding off delivery of all
messages at the original computer until any queued messages have been transferred to the
destination computer. Message delivery can thereafter be rerouted safely, and the forwarding
address returned to senders.

18.5.2 Openness: protocols and drivers
Transport protocols ◊  Despite the intention that a range of transport protocols should be
accommodated by running the network servers in user space, at the time of writing, Mach’s
network servers in widespread use employ only TCP/IP as the transport protocol. This was
prompted in part by UNIX compatibility, and in part it was selected by Carnegie-Mellon
University because of its complex network containing over 1700 computers, about 500 of which
run Mach. TCP/IP is tuned to achieve robustness fairly efficiently in the face of such a network.
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However, this is not necessarily suitable on LANs when request-reply interactions predominate,
for performance reasons. We discuss the performance of Mach communication in Section 18.6
below.

User-level network drivers ◊  Some network servers provide their own, user-level network device
drivers. The aim of this is to speed up network accesses. Apart from achieving flexibility in relation
to using a range of hardware, placing device drivers at user level is largely a means of
compensating for the performance degradation due to using a user-level network server. The kernel
exports an abstraction of each device, which includes an operation to map the device controller’s
registers into user space. In the case of an Ethernet, both the registers and the packet buffers used
by the controller can be mapped into the network server’s address space. In addition, special code
is run in the kernel to wake up a user-level thread (belonging, in this case, to the network server)
when an interrupt occurs. This thread is thus able to handle the interrupt by transferring data to or
from the buffers used by the controller and resetting the controller for the next operation.

18.6 Memory management

Mach is notable not only for its use of large, sparse address spaces but also for its virtual memory
techniques allowing for memory sharing between tasks. Not only can memory be shared physically
between tasks executing on the same Mach kernel but Mach’s support for external pagers (called
memory managers in the Mach literature) also allows for the contents of virtual memory to be
shared between tasks, even when they reside at different computers. Lastly, the Mach virtual
memory implementation is notable for being divided into machine-independent and machine-
dependent layers to aid in porting the kernel [Rashid et al. 1988]. 

18.6.1 Address space structure

In Chapter 6, we introduced a generic model of an address space consisting of regions. Each region
is a range of contiguous logical addresses with a common set of properties. These properties
include access permissions (read/write/execute), and also extensibility. Stack regions, for example,
are allowed to grow towards decreasing addresses; and heaps can grow upwards. The model used
by Mach is similar. 

However, the Mach view of address spaces is that of a collection of contiguous groups of
pages named by their addresses, rather than of regions that are separately identifiable. Thus
protection in Mach is applied to pages rather than regions. Mach system calls refer to addresses and
extents rather than to region identifiers. For example, Mach would not ‘grow the stack region’.
Instead, it would allocate some more pages just below those that are currently used for the stack.
However, for the most part this distinction is not too important. 

We shall refer to a contiguous collection of pages with common properties as a region. As
we have seen, Mach supports large numbers of regions, which can be used for varying purposes
such as message data or mapped files. 

Regions can be created in any of four ways: 

• They can be allocated explicitly by a call to vm_allocate. A region newly created with
vm_allocate is, by default, zero-filled. 

• A region can be created in association with a memory object, using vm_map. 

• Regions can be assigned in a brand new task by declaring them (or rather them and their
contents) to be inherited from a blueprint task, using vm_inherit applied to the blueprint’s
region. 

• Regions can be allocated automatically in a task’s address space as a side effect of message
passing.
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All regions can have their read/write/execute permissions set, using vm_protect. Regions can be
copied within tasks using vm_copy, and their contents can be read or written by other tasks using
vm_read and vm_write. Any previously allocated region can be de-allocated, using vm_deallocate. 

We shall now describe Mach’s approach to the implementation of the UNIX fork operation
and the virtual memory aspects of message passing, which are incorporated in Mach so as to enable
memory sharing to take place wherever convenient.

18.6.2 Memory sharing: inheritance and message passing

Mach allows for a generalization of UNIX fork semantics through the mechanism of memory
inheritance. We have seen that a task is created from another task, which acts as a blueprint. A
region that is inherited from the blueprint task contains the same address range, and its memory is
either:

shared: backed by the same memory; or 

copied:  a ‘copy-inherited’ region is one that is backed by memory that is a copy of the
blueprint’s memory at the time the child region was created.

It is also possible, in case a region is not required in the child, to set it to be non-inherited.
In the case of a UNIX fork, the program text of the blueprint task is set to be inherited for

sharing by the child task. The same would be true of a region containing shared library code. The
program heap and stack, however, would be inherited as copies of the blueprint’s regions. In
addition, if the blueprint is required to share a data region with its child (as is allowed by System
V UNIX), then it could set up this region to be inherited for sharing.

Out-of-line message data is transferred between tasks in a way that is somewhat similar to
copy-inheritance. A region is created by Mach in the receiver’s address space, and its initial
contents are a copy of the region passed as out-of-line data by the sender. Unlike inheritance, the
received region does not in general occupy the same address range as the sent region. The address
range of the sent region might already be used by an existing region in the receiver.

Mach uses copy-on-write for both copy inheritance and message passing. Mach thus makes
an optimistic assumption: that some or all the memory that is copy-inherited or passed as out-of-
line message data will not be written by either task, even when write permissions exist.

To justify this optimistic assumption, consider once again, for example, the UNIX fork
system call. It is common for a fork operation to be followed soon by an exec call, overwriting the
address space contents, including the writable heap and stack. If memory had been physically
copied at the time of the fork, then most of this copying would have been wasted: few pages are
modified between the two calls. 

As a second important example, consider a message sent to the local network server for
transmission. This message might be very large. If, however, the sending task does not modify the
message, or modifies only parts of it, in the time taken to transmit the message, then much memory
copying can be saved. The network server has no reason to modify the message. The copy-on-write
optimization helps to offset the context switching costs incurred in transmitting via the network
server.

By contrast to copy-on-write, Chorus and DASH [Tzou and Anderson 1991] support
communication by moving (not copying) pages between address spaces. The Fbufs design exploits
virtual memory manipulations for both copying and moving pages [Druschel and Peterson 1993].

18.6.3 Evaluation of copy-on-write

While copy-on-write assists in passing message data between tasks and the network server, copy-
on-write cannot be used to facilitate transmission across a network. This is because the computers
involved do not share physical memory.

Copy-on-write is normally efficient as long as sufficient data are involved. The advantage of
avoiding physical copying has to outweigh the costs of page table manipulations (and cache
manipulations, if the cache is virtually mapped – see Section 6.3). Figures for a Mach
implementation on a Sun 3/60 are given by Abrossimov et al. [1989], and we reproduce some of
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them in Figure 18.7. The figures are given for illustration only and do not necessarily represent the
most up-to-date performance of Mach.

Times for regions of two sizes, 8 kilobytes (1 page) and 256 kilobytes (32 pages), are given.
The first two columns are for reference only. The column ‘Simple copy’ shows the time it would
take simply to copy all the data involved between two pre-existing regions (that is, without using
copy-on-write). The column ‘Create region’ gives the time required to create a zero-filled region
(but one that is not accessed). The remaining columns give measured times taken from experiments
in which a pre-existing region was copied into another region using copy-on-write. The figures
include the time for creating the copy region, copying data on modification and destroying the copy
region. For each region size, figures are given for cases of different amounts of data modified in
the source region.

If we compare the times for a one-page region, there is an overhead of 4.82 – 2.7 =
2.12 milliseconds due to the page being written, 1.4 milliseconds of which can be ascribed to
copying the page; the remaining 0.72 milliseconds is taken up by write-fault handling and
modification of internal virtual memory management data structures. For sending a message of
size 8 kilobytes between two local tasks, sending the data out of line (that is, using copy-on-write)
seems to be of dubious advantage over sending it in-line, when it will be simply copied. In-line
transfer would involve two copies (user-kernel and kernel-user), and therefore would take
somewhat more than 2.8 milliseconds in all. But the worst out-of-line case is significantly more
expensive. On the other hand, transmitting a 256 kilobyte message out of line is far less expensive
than in-line transmission if the optimistic assumption holds; and even in the worst case, 66.4
milliseconds is less than the  milliseconds required to copy 256 kilobytes of in-line data
into and out of the kernel.

As a final point regarding virtual memory techniques for copying and sharing data, note that
care has to be taken over specifying the data involved. Although we did not state this above, a user
can specify regions as address ranges that do not begin and end on a page boundary. Mach,
however, is forced to apply memory sharing at the granularity of a page. Any data that are within
the pages concerned but were not specified by the user will nonetheless be copied between the
tasks. This is an example of what is known as false sharing (see also the discussion of the
granularity of shared data items in Chapter 16).

18.6.4 External pagers

In keeping with the microkernel philosophy, the Mach kernel does not support files or any other
abstraction of external storage directly. Instead, it assumes that these resources are implemented
by external pagers. Following Multics [Organick 1972], Mach has chosen the mapped access
model for memory objects. Instead of accessing stored data using explicit read and write
operations, the programmer is required only to access corresponding virtual memory locations
directly. An advantage of mapped access is its uniformity: the programmer is presented with one
model for access to data, not two. However, the question of whether mapped access is preferable
to using explicit operations is complex in its ramifications, especially as regards performance, and
we shall not attempt to deal with it here. We shall concentrate now on the distributed aspects of the

Figure 18.7 Copy-on-write overheads

Region size Simple copy Create region Amount of data copied (on writing)

 0  kilobytes
(0 pages)

8 kilobytes
(1 page)

256 kilobytes
(32 pages)

8 kilobytes  1.4 1.57 2.7 4.82 –

256 kilobytes 44.8 1.81 2.9 5.12 66.4

Note: all times are in milliseconds.

2 44.8×
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Mach virtual memory implementation. This consists primarily of the protocol between the kernel
and an external pager that is necessary to manage the mapping of data stored by the latter.

Mach allows a region to be associated with contiguous data from a specified offset in a
memory object, using a call to vm_map. This association means that read accesses to addresses in
the region are satisfied by data backed by the memory object, and data in the region modified by
write accesses are propagated back to the memory object. In general, the memory object is
managed by an external pager, although a default pager may be supplied, implemented by the
kernel itself. The memory object is represented by send rights to a port used by the external pager,
which satisfies requests from the kernel concerning the memory object.

For each memory object mapped by it, the kernel keeps a local resource called a memory
cache object (Figure 18.8). Essentially, this is a list of pages containing data backed by the
corresponding memory object.

The roles of an external pager are (a) to store data that have been purged by a kernel from its
cache of pages, (b) to supply page data as required by a kernel, and (c) to impose consistency
constraints pertaining to the underlying memory resource abstraction in the case where the memory
resource is shared and several kernels can hold memory cache objects for the same memory object
simultaneously.

The main components of the message passing protocol between the kernel (K) and external
pager (EP) are summarized in Figure 18.9. When vm_map is called, the local kernel contacts the
external pager using the memory object port send right supplied to it in the vm_map call, sending
it a message memory_object_init. The kernel supplies send rights in this message, which the
external pager is to use to control the memory cache object. It also declares the size and offset of
the required data in the memory object, and the type of access required (read/write). The external
pager responds with a message memory_object_set_attributes, which tells the kernel whether the
pager is yet ready to handle data requests, and supplies further information about the pager’s
requirements in relation to the memory object. When an external pager receives a
memory_object_init message, it is able to determine whether it needs to implement a consistency
protocol, since all kernels wishing to access the corresponding memory object have to send this
message.

18.6.5 Supporting access to a memory object

We begin by considering the case in which a memory object is unshared – just one computer maps
it. For the sake of concreteness, we can think of the memory object as a file. Assuming no pre-
fetching of file data from the external pager, all pages in the mapped region corresponding to this
file are initially hardware-protected against all accesses, since no file data is resident. When a
thread attempts to read one of the region’s pages, a page fault occurs. The kernel looks up the
memory object port send right corresponding to the mapped region and sends a
memory_object_data_request message to the external pager (which is, in our example, a file
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server). If all is well, the external pager responds with the page data, in a
memory_object_data_provided message.

If the file data is modified by the computer that has mapped it, then sometimes the kernel
needs to write the page from its memory cache object. To do this, it sends a message
memory_object_data_write to the external pager, containing the page data. Modified pages are
transmitted to the external pager as a side effect of page replacement (when the kernel needs to find
space for another page). In addition, the kernel can decide to write the page to backing store (but
leave it in the memory cache object) in order to meet persistence guarantees. Implementations of
UNIX, for example, write modified data to disk normally at least every 30 seconds, in case of a
system crash. Some operating systems allow programs to control the safety of their data by issuing
a flush command on an open file, which causes all modified file pages to be written to disk by the
time the call returns.

Different types of memory resource can have differing persistence guarantees. The external
pager can itself request, in a memory_object_lock_request message to a kernel, that modified data
in a specified range be sent back to the pager for commitment to permanent storage in accordance
with these guarantees. When the kernel has completed the requested actions, it sends a
memory_object_lock_completed message to the external pager. (The external pager requires this,
because it cannot know which pages have been modified and so need to be written back to it.)

Note that all the messages we are describing are sent asynchronously, even if they sometimes
occur in request-reply combinations. This is, first, so that threads are not suspended but can get on
with other work after issuing requests. Moreover, a thread is not tied up when it has issued a request
to an external pager or kernel that turns out to have crashed (or when the kernel sends a request to
an ill-behaved external pager that does not reply). Lastly, an external pager can use the
asynchronous message-based protocol to implement a page pre-fetching policy. It can send page
data in memory_object_data_provided messages to memory cache objects in anticipation of the
data’s use, instead of waiting for a page fault to occur and for the data then to be requested.

Supporting shared access to a memory object ◊  Let us now suppose, following our example, that
several tasks residing at different computers map a common file. If the file is mapped read-only in
every region used to access it, then there is no consistency problem and requests for file pages can
be satisfied immediately. If, however, at least one task maps the file for writing, then the external

Figure 18.9 External pager messages
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pager (that is, the file server) has to implement a protocol to ensure that tasks do not read
inconsistent versions of the same page.

The reader is invited to translate the write-invalidate protocol for achieving sequential
consistency, as discussed in Chapter 16, into messages sent between the Mach kernel and external
pagers.

18.7 Summary

The Mach kernel runs on both multiprocessor and uniprocessor computers connected by networks.
It was designed to allow new distributed systems to evolve while maintaining UNIX compatibility.
Most recently, the Mach 3.0 microkernel is the basis for the MkLinux implementation of the Linux
operating system.

Due in part to the sophistication of some of the facilities Mach is designed to emulate, the
kernel itself is complex. The kernel’s interface includes several hundred calls, although many of
these are stubs which make only mach_msg system call traps. An operating system such as UNIX
cannot be emulated using message passing alone. Sophisticated virtual memory facilities are
required, and Mach provides these. Mach’s model of tasks and threads and the integration of virtual
memory management with communication all represent a considerable improvement over basic
UNIX facilities, incorporating lessons learned in attempting to implement UNIX servers, in
particular. Its model of inter-task communication is functionally rich and extremely complex in its
semantics. However, it should be borne in mind that only a few system programmers should ever
have to use it in its raw form: for example, simple UNIX pipes and remote procedure calls are both
provided on top of it.

Although the Mach kernel is often referred to as a microkernel, it is of the order of 500
kilobytes of code and initialized data (including a substantial proportion of device driver code).
The so-called second-generation microkernels that have succeeded it supply simpler memory
management facilities and simpler inter-process communication.

Second-generation microkernels, with optimized inter-process communication, outstrip
Mach’s UNIX emulation performance. For example, the designers of the L4 microkernel [Härtig
et al. 1997] report that their user-level implementation of Linux is within 5–10% of a native Linux
implementation on the same machine. By contrast, they report a benchmark in which the MkLinux
user-level emulation of Linux on Mach 3.0 provides an average of 50% worse throughput than
native Linux on that machine.

The Mach philosophy of providing all extended functionality at user level was eventually
dropped, and servers were allowed to be co-located with the kernel [Condict et al. 1994]. But
Härtig et al. report that even the kernel-level MkLinux emulation of Linux is about 30% slower
than native Linux.

Despite its performance limitations for the purposes of UNIX emulation, Mach, along with
Chorus, is an innovative design that remains important. Both continue to be used, and they are an
invaluable reference for developments in kernel architecture. The reader can find further material
on kernel design at www.cdk3.net/oss: Amoeba, Chorus and the emulation of UNIX on top of
Mach and Chorus.

EXERCISES

18.1 How does a kernel designed for multiprocessor operation differ from one intended to operate only
on single-processor computers? page 3

18.2 Define (binary-level) operating system emulation. Why is it desirable and, given that it is desirable,
why is it not routinely done? page 3

18.3 Explain why the contents of Mach messages are typed. page 7
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18.4 Discuss whether the Mach kernel’s ability to monitor the number of send rights for a particular port
should be extended to the network. page 9

18.5 Why does Mach provide port sets, when it also provides threads? page 9

18.6 Why does Mach provide only a single communication system call, mach_msg? How is it used by
clients and by servers? page 9 

18.7 What is the difference between a network port and a (local) port? page 10 

18.8 A server in Mach manages many thingumajig resources. 

(i) Discuss the advantages and disadvantages of associating: 

a) a single port with all the thingumajigs;

b) a single port per thingumajig;

c) a port per client. 

(ii) A client supplies a thingumajig identifier to the server, which replies with a port right. What
type of port right should the server send back to the client? Explain why the server’s
identifier for the port right and that of the client may differ. 

(iii) A thingumajig client resides at a different computer from the server. Explain in detail how
the client comes to possess a port right that enables it to communicate with the server, even
though the Mach kernel can only transmit port rights between local tasks.

(iv) Explain the sequence of communication events that take place under Mach when the client
sends a message requesting an operation upon a thingumajig, assuming again that client and
server reside at different computers. page 10

18.9 A Mach task on machine A sends a message to a task on a different machine B. How many domain
transitions occur, and how many times are the message contents copied if the message is page-
aligned? page 10

18.10 Design a protocol to achieve migration transparency when ports are migrated. page 11

18.11 How can a device driver such as a network driver operate at user level? page 12

18.12 Explain two types of region sharing that Mach uses when emulating the UNIX fork() system call,
assuming that the child executes at the same computer. A child process may again call fork().
Explain how this gives rise to an implementation issue, and suggest how to solve it.page 13 

18.13 (i) Is it necessary that a received message’s address range is chosen by the kernel when copy-on-
write is used?

(ii) Is copy-on-write of use for sending messages to remote destinations in Mach?

(iii) A task sends a 16 kilobyte message asynchronously to a local task on a 10 MIPS, 32-bit
machine with an 8 kilobyte page size. Compare the costs of (1) simply copying the message
data (without using copy-on-write) (2) best-case copy-on-write and (3) worst-case copy-on-
write. You can assume that:

• creating an empty region of size 16 kilobytes takes 1000 instructions;

• handling a page fault and allocating a new page in the region takes 100 instructions.page
13

18.14 Summarize the arguments for providing external pagers. page 14

18.15 A file is opened and mapped at the same time by two tasks residing at machines without shared
physical memory. Discuss the problem of consistency this raises. Design a protocol using Mach
external pager messages which ensures sequential consistency for the file contents (see Chapter 16).
page 16


	18.1 Introduction
	18.1.1 Design goals and chief design features
	18.1.2 Overview of the main Mach abstractions

	18.2 Ports, naming and protection
	18.3 Tasks and threads
	18.4 Communication model
	18.4.1 Messages
	18.4.2 Ports
	18.4.3 Mach_msg

	18.5 Communication implementation
	18.5.1 Transparent�message�delivery
	18.5.2 Openness: protocols and drivers

	18.6 Memory management
	18.6.1 Address�space�structure
	18.6.2 Memory�sharing:�inheritance�and�message�passing
	18.6.3 Evaluation�of�copy-on-write
	18.6.4 External pagers
	18.6.5 Supporting�access�to�a�memory�object

	18.7 Summary

