
168 CHAPTER 4 INTERPROCESS COMMUNICATION

cases, this service would require that all members receive request messages in the
same order as one another.

2. Finding the discovery servers in spontaneous networking: Provided that any
process that wants to locate the discovery servers multicasts requests at periodic
intervals for a time after it starts up, an occasional lost request is not an issue when
locating a discovery server. In fact, Jini uses IP multicast in its protocol for finding
the discovery servers. This is described in Section 16.2.1.

3. Better performance through replicated data: Consider the case where the
replicated data itself, rather than operations on the data, is distributed by means of
multicast messages. The effect of lost messages and inconsistent ordering would
depend on the method of replication and the importance of all replicas being
totally up to date. For example, the replicas of newsgroups are not necessarily
consistent with one another at any one time – messages even appear in different
orders, but users can cope with this.

4. Propagation of event notifications: The particular application determines the
qualities required of multicast. For example, the Jini lookup services use IP
multicast announce their existence (see Section 16.2.1).

These examples suggest that some applications require a multicast protocol that is more
reliable than IP multicast. In particular, there is a need for reliable multicast – in which
any message transmitted is either received by all members of a group or by none of them.
The examples also suggest that some applications have strong requirements for
ordering, the strictest of which is called totally ordered multicast, in which all of the
messages transmitted to a group reach all of the members in the same order.

Chapter 12 will define and show how to implement reliable multicast and various
useful ordering guarantees, including totally ordered multicast.

4.6 Case study: interprocess communication in UNIX

The IPC primitives in BSD 4.x versions of UNIX are provided as system calls that are
implemented as a layer over the Internet TCP and UDP protocols. Message destinations
are specified as socket addresses – a socket address consists of an Internet address and
a local port number.

The interprocess communication operations are based on the socket abstraction
described in Section 4.2.2. As described there, messages are queued at the sending
socket until the networking protocol has transmitted them, and until an
acknowledgement arrives, if the protocol requires one. When messages arrive, they are
queued at the receiving socket until the receiving process makes an appropriate system
call to receive them.

Any process can create a socket for use in communication with another process.
This is done by invoking the socket system call, whose arguments specify the
communication domain (normally the Internet), the type (datagram or stream) and
sometimes a particular protocol. The protocol (for example, TCP or UDP) is usually
selected by the system according to whether the communication is datagram or stream.

SECTION 4.6 CASE STUDY: INTERPROCESS COMMUNICATION IN UNIX 169

The socket call returns a descriptor by which the socket may be referenced in
subsequent system calls. The socket lasts until it is closed or until every process with the
descriptor exits. A pair of sockets may be used for communication in both or either
direction between processes in the same or different computers.

Before a pair of processes can communicate, the recipient must bind its socket
descriptor to a socket address. The sender must also bind its socket descriptor to a socket
address if it requires a reply. The bind system call is used for this purpose; its arguments
are a socket descriptor and a reference to a structure containing the socket address to
which the socket is to be bound. Once a socket has been bound, its address cannot be
changed.

It might seem more reasonable to have one system call for both socket creation
and binding a name to a socket, as for example in the Java API. The supposed advantage
of having two separate calls is that sockets can be useful without socket addresses.

Socket addresses are public in the sense that they can be used as destinations by
any process. After a process has bound its socket to a socket address, the socket may be
addressed indirectly by another process referring to the appropriate socket address. Any
process, for example a server that plans to receive messages via its socket, must first
bind that socket to a socket address and make the socket address known to potential
clients.

4.6.1 Datagram communication
In order to send datagrams, a socket pair is identified each time a communication is
made. This is achieved by the sending process using its local socket descriptor and the
socket address of the receiving socket each time it sends a message.

 This is illustrated in Figure 4.21, in which the details of the arguments are
simplified.

• Both processes use the socket call to create a socket and get a descriptor for it. The
first argument of socket specifies the communication domain as the Internet
domain and the second argument indicates that datagram communication is
required. The last argument to the socket call may be used to specify a particular

Figure 4.21 Sockets used for datagrams

Receiving a message

 •
•
bind(s, ClientAddress)
•
•
sendto(s, "message", ServerAddress)

•
•
bind(s, ServerAddress)
•
•
amount = recvfrom(s, buffer, from)

s = socket(AF_INET, SOCK_DGRAM, 0)s = socket(AF_INET, SOCK_DGRAM, 0)

Sending a message

ServerAddress and ClientAddress are socket addresses

170 CHAPTER 4 INTERPROCESS COMMUNICATION

protocol, but setting it to zero causes the system to select a suitable protocol –
UDP in this case.

• Both processes then use the bind call to bind their sockets to socket addresses. The
sending process binds its socket to a socket address referring to any available local
port number. The receiving process binds its socket to a socket address that
contains its server port and must be made known to the sender.

• The sending process uses the sendto call with arguments specifying the socket
through which the message is to be sent, the message itself and (a reference to a
structure containing) the socket address of the destination. The sendto call hands
the message to the underlying UDP and IP protocols and returns the actual number
of bytes sent. As we have requested datagram service, the message is transmitted
to its destination without an acknowledgement. If the message is too long to be
sent, there is an error return (and the message is not transmitted).

• The receiving process uses the recvfrom call with arguments specifying the local
socket on which to receive a message and memory locations in which to store the
message and (a reference to a structure containing) the socket address of the
sending socket. The recvfrom call collects the first message in the queue at the
socket, or if the queue is empty it will wait until a message arrives.

Communication occurs only when a sendto in one process addresses its message to the
socket used by a recvfrom in another process. In client-server communication, there is
no need for servers to have prior knowledge of clients’ socket addresses, because the
recvfrom operation supplies the sender’s address with each message it delivers. The
properties of datagram communication in UNIX are the same as those described in
Section 4.2.3.

4.6.2 Stream communication
In order to use the stream protocol, two processes must first establish a connection
between their pair of sockets. The arrangement is asymmetric because one of the sockets
will be listening for a request for a connection and the other will be asking for a
connection, as described in Section 4.2.4. Once a pair of sockets has been connected,
they may be used for transmitting data in both or either direction. That is, they behave
like streams in that any available data is read immediately in the same order as it was
written and there is no indication of boundaries of messages. However, there is a
bounded queue at the receiving socket and the receiver blocks if the queue is empty; the
sender blocks if it is full.

For communication between clients and servers, clients request connections and a
listening server accepts them. When a connection is accepted, UNIX automatically
creates a new socket and pairs it with the client’s socket so that the server may continue
listening for other clients’ connection requests through the original socket. A connected
pair of stream sockets can be used in subsequent stream communication until the
connection is closed.

Stream communication is illustrated in Figure 4.22, in which the details of the
arguments are simplified. The figure does not show the server closing the socket on
which it listens. Normally, a server would first listen and accept a connection and then

SECTION 4.6 CASE STUDY: INTERPROCESS COMMUNICATION IN UNIX 171

fork a new process to communicate with the client. Meanwhile, it will continue to listen
in the original process.

• The server or listening process first uses the socket operation to create a stream
socket and the bind operation to bind its socket to the server’s socket address. The
second argument to the socket system call is given as SOCK_STREAM, to
indicate that stream communication is required. If the third argument is left as
zero, the TCP/IP protocol will be selected automatically. It uses the listen
operation to listen on its socket for client requests for connections. The second
argument to the listen system call specifies the maximum number of requests for
connections that can be queued at this socket.

• The server uses the accept system call to accept a connection requested by a client
and obtain a new socket for communication with that client. The original socket
may still be used to accept further connections with other clients.

• The client process uses the socket operation to create a stream socket and then uses
the connect system call to request a connection via the socket address of the
listening process. As the connect call automatically binds a socket name to the
caller’s socket, prior binding is unnecessary.

• After a connection has been established, both processes may then use the write and
read operations on their respective sockets to send and receive sequences of bytes
via the connection. The write operation is similar to the write operation for files.
It specifies a message to be sent to a socket. It hands the message to the underlying
TCP/IP protocol and returns the actual number of characters sent. The read
operation receives some characters in its buffer and returns the number of
characters received.

The properties of stream communication in UNIX are the same as those described in
Section 4.2.4.

Figure 4.22 Sockets used for streams

Requesting a connection Listening and accepting a connection

•
bind(s, ServerAddress);
listen(s,5);
•
sNew = accept(s, ClientAddress);
•
n = read(sNew, buffer, amount)

s = socket(AF_INET, SOCK_STREAM,0)
•
•
connect(s, ServerAddress)
•
•
write(s, "message", length)

s = socket(AF_INET, SOCK_STREAM,0)

ServerAddress and ClientAddress are socket addresses

