
206 CHAPTER 5 DISTRIBUTED OBJECTS AND REMOTE INVOCATION

Forwarding: A forwarding observer may carry out all the work of sending
notifications to subscribers on behalf of one or more objects of interest. All an object
of interest need do is to send a notification to the forwarding observer, leaving it to
continue with its normal task. To use a forwarding observer, an object of interest
passes on the information about its subscribers’ interests to that forwarding observer.

Filtering of notifications: Filters may be applied by an observer so as to reduce the
number of notifications received according to some predicate on the contents of each
notification. For example, an event might relate to withdrawals from a bank account,
but the recipient is interested only in those greater than $100.

Patterns of events: When an object subscribes to events at an object of interest, they
can specify patterns of events that they are interested in. A pattern specifies a
relationship between several events. For example, a subscriber may be interested
when there are three withdrawals from a bank account without an intervening
deposit. A similar requirement is to correlate events at a variety of objects of interest;
for example, notifying the subscriber only when a certain number of them have
generated events.

Notification mailboxes: In some cases, notifications need to be delayed until a
potential subscriber is ready to receive them. For example, if the subscriber has faulty
connections or when an object has been passivated and is activated again. An
observer may take on the role of a notification mailbox, which is to receive
notifications on behalf of a subscriber, only passing them on (in a single batch) when
the subscriber is ready to receive them. The subscriber should be able to turn delivery
on and off as required. The subscriber sets up a notification mailbox when it registers
with an object of interest by specifying the notification mailbox as the place to send
notifications.

5.4.2 Case study: Jini distributed event specification

The Jini distributed event specification described by Arnold et al. [1999] allows a
potential subscriber in one Java Virtual Machine (JVM) to subscribe to and receive
notifications of events in an object of interest in another JVM, usually on another
computer. A chain of observers may be inserted between the object of interest and the
subscriber. The main objects involved in the Jini distributed event specification are:

Event generators: An event generator is an object that allows other objects to
subscribe to its events and generates notifications.

Remote event listeners: A remote event listener is an object that can receive
notifications.

Remote events: A remote event is an object that is passed by value to remote event
listeners. A remote event is the equivalent of what we called a notification.

Third-party agents: Third-party agents may be interposed between an object of
interest and a subscriber. They are the equivalent of our observers.

An object subscribes to events by informing the event generator about the type of event
and specifying a remote event listener as the target for notifications.

Chapter 5 RMI.fm Page 206 Monday, March 14, 2005 10:23 AM

SECTION 5.4 EVENTS AND NOTIFICATIONS 207

Java RMI is used to send notifications from the event generator to the subscriber,
possibly via one or more first third-party agents. The designers state that event listeners
should reply to notification calls as soon as possible to avoid delaying event generators.
They can process a notification after the return. Java RMI is also used to subscribe to
events. Jini events are provided by means of the following interfaces and classes:

 RemoteEventListener: This interface provides a method called notify. Subscribers
and third-party agents implement the RemoteEventListener interface so that they can
receive notifications when the notify method is invoked. An instance of the
RemoteEvent class represents a notification and is passed as argument to the notify
method.

RemoteEvent: This class has instance variables that hold:

• a reference to the event generator in which the event occurred;

• an event identifier, which specifies the type of event at that event generator;

• a sequence number, which applies to events of that type. The sequence number
should increase as events occur over time. It can be used to enable recipients to
order events of a particular type from a given source or to avoid applying the
same event twice;

• a marshalled object. This is supplied when the recipient subscribes to that type
of event and may be used by a recipient for any purpose. It generally holds any
information needed by the recipient to identify the event and react to its
occurrence. For example, it could include a closure that is to be run when it is
notified.

EventGenerator: This interface provides a method called register. Event generators
implement the EventGenerator interface, whose register method is used to subscribe
to events at the event generator. The arguments of register specify:

• an event identifier, which specifies the type of event;

• a marshalled object to be handed back with each notification;

• a remote reference to an event listener object – the place to send notifications;

• a requested leasing period. The lease period specifies the duration of lease
required by the subscriber, but the actual lease granted is returned with the
results of register. Time limits on subscriptions avoid the problem of event
generators holding stale event subscriptions. Subscriptions can be renewed
whenever the time limit in the lease expires.

The Jini specification says that the EventGenerator interface is just an example of the
kind of interface that might be used by subscribers to register interest in events at an
object of interest. Some applications may require a different interface.

Third-party agents ◊ The third-party agents that are interposed between an event
generator and a subscriber may play a variety of useful roles, including all of those
described above.

In the simplest case, a subscriber registers interest in a particular type of event at
an event generator and specifies itself as the remote event listener. This corresponds to
case 1 illustrated in Figure 5.11.

Chapter 5 RMI.fm Page 207 Monday, March 14, 2005 10:23 AM

208 CHAPTER 5 DISTRIBUTED OBJECTS AND REMOTE INVOCATION

Third-party agents can be set up by an event generator or by a subscriber.
An event generator can interpose one or more third-party agents between itself

and a subscriber. For example, the event generators on each computer could make use
of a shared third-party agent that is responsible for reliable delivery of notifications.

A subscriber can build a chain of third-party agents in order to produce whatever
delivery policy it requires. It then registers interest with an event generator, specifying
the first in the chain of third-party agents as the place to send notifications. For example,
a subscriber may arrange for its notifications to be stored by a third-party agent until
such time as it is ready to receive them. The third-party agent can take responsibility for
renewing leases.

5.5 Case study: Java RMI

Java RMI extends the Java object model to provide support for distributed objects in the
Java language. In particular, it allows objects to invoke methods on remote objects using
the same syntax as for local invocations. In addition, type checking applies equally to
remote invocations as to local ones. However, an object making a remote invocation is
aware that its target is remote because it must handle RemoteExceptions; and the
implementor of a remote object is aware that it is remote because it must implement the
Remote interface. Although the distributed object model is integrated into Java in a
natural way, the semantics of parameter passing differ because invoker and target are
remote from one another.

The programming of distributed applications in Java RMI should be relatively
simple because it is a single-language system – remote interfaces are defined in the Java
language. If a multiple-language system such as CORBA is used, the programmer needs
to learn an IDL and to understand how it maps onto the implementation language.
However, even in a single-language system, the programmer of a remote object must
consider its behaviour in a concurrent environment.

In the remainder of this introduction, we give an example of a remote interface,
then discuss the parameter-passing semantics with reference to the example. Finally, we
discuss the downloading of classes and the binder. The second section of this case study
discusses how to build client and server programs for the example interface. The third
section is concerned with the design and implementation of Java RMI. For full details
of Java RMI, see the tutorial on remote invocation [java.sun.com I].

In this case study and the CORBA case study in Chapter 20 as well as in the
discussion of web services in Chapter 19, we use a shared whiteboard as an example.
This is a distributed program that allows a group of users to share a common view of a
drawing surface containing graphical objects, such as rectangles, lines and circles, each
of which has been drawn by one of the users. The server maintains the current state of a
drawing by providing an operation for clients to inform it about the latest shape their
users have drawn and keeping a record of all the shapes it has received. The server also
provides operations allowing clients to retrieve the latest shapes drawn by other users by
polling the server. The server has a version number (an integer) that it increments each
time a new shape arrives and attaches to the new shape. The server provides operations

Chapter 5 RMI.fm Page 208 Monday, March 14, 2005 10:23 AM

